
Variables

• Variables allow your programs to
store, load, and change values in memory.

• Every variable:

1. has a name and

2. is bound to a value of a specific data type

Current Scope

age
int

20

How to use a variable, generally...

1. Declare the variable with name & type

2. Initialize / Assign variable its first value
(Steps 1 and 2 can be combined!)

Once 1 and 2 are done, then you can*:

• Access the value stored in a variable, or,

• Reassign new values to the variable

* There are additional rules governing where you can access
and assign a variable from.

Declare

Initialize / Assign

Access / "Read" Reassign / "Write"

Variable Declaration Syntax

• When you declare a variable, you are proclaiming...
“henceforth, the identifier <some name> shall be bound to a(n)
object of <some type> stored in memory”

age: int
• “the identifier age shall refer to an int value stored in memory.”

• General form:

[identifier]: [type]

• The type can be: int, float, str
(and many more types to come!)

3

Variable Assignment Syntax (1/4)

• The assignment statement binds a value to a variable

• “age is bound to the value 21”

• General form:

• The single equal symbol's name is the assignment operator.

4

Variable Assignment Semantics (2/4)

5

When this line of code runs:

age = 20

The identifier age is bound to a space in
memory holding the value 20.

Later, if the following statement evaluates:

age = 21

The identifier age is now bound to a space in
memory holding the value 21.

Assignment is not equality!

Current Scope - after age = 20 evaluates

age 20

Current Scope - after age = 21 evaluates

age 21

Variable Assignment Rules (3/4)
• A variable’s value can change as the program runs

• Just assign another value to the same variable!
• After an assignment statement evaluates, when a subsequent line of code accesses the

variable it will have the most recently assigned value.

• The assignment operator is not commutative!
[identifier] = [expression] # OK
[expression] = [identifier] # NOT OK
The variable's name must be on the left of the assignment operator (=) and
the value being assigned must be on the right.

• You should not refer to a variable until after its name defined and bound!
•
•

• For COMP110: expression's type must match the variable’s declared type

6

Variable Assignment Rules - Expressions (4/4)

• Notice the right-hand side (RHS) of assignment is an expression!
[identifier] = [expression]

• Remember! Every expression evaluates to a single value at runtime.

• To know what value the variable name will be bound to, the expression of
an assignment statement must first be evaluated.

• If the following line ran:

1. The computer evaluates the RHS expression

2. The name age is bound to the result of it 7

Current Scope -
after age = 20 + 3 evaluates

age 23

Variable Initialization (1 / 2)

• Initialization is the first time you assign a value to a variable.
• After initialization a variable is considered defined or "bound".

• Always, always, always initialize your variables!

• You can declare and initialize it in two steps:

lucky: int
lucky = 13

• Or, you can combine these steps into a single statement:

lucky: int = 13

Variable Initialization – Type Inference (2 / 2)

• Notice there is some redundancy in this statement:

lucky: int = 13

• "Let lucky be an int variable that is initially assigned the int 13."

• If you combine declaration and initialization, a modern programming language
will infer the variable's type for you. So, you can write:

lucky = 13

• You are encouraged to explicitly type your variables in this course, even when
there is some redundancy in the declaration. It will help you avoid accidental
typing errors!

Variable Access Expression – "Read" (1/2)

• After you have declared a variable and
initialized it…

• You can access ("read", "look up") a variable’s
value in memory by its name

age
• “Find the name age and evaluate to its

bound value.”

• Caution! This is very different than:
• This is a string literal expression!

Current Scope

age 20

Variable Access in an Assignment Statement (2/2)

• Consider the following assignment statement:

age = age + 1
“age is assigned the current value of age plus one”

Steps:

1. current value of age is accessed ("read")

2. The integer value 1 is added to it

3. age is bound to the resulting value in memory

1 2
Current Scope

age 23

Current Scope
after age = age + 1 evaluates

age 24

Variable Name & Identifier Rules (1/2)

Variable names are an example of an identifier.

Identifiers cannot contain spaces, must begin with a letter or underscore, and contain
only letters, numbers, and underscores.

In Python, it is traditional to use for multiword variable names.

For example, a variable to store "year of birth" would be named:

12

Pythonic: Dunderscore Identifiers (1/2)
Python surrounds special identifiers in double underscores called dunderscores

Example: __author__

These are identifiers Python assigns special meaning to. We'll see more!

__init__

__name__

__repr__

__str__

This is a Pythonic Idiom! Each language has its own idioms for similar purposes.

13

