
Memory
Diagrams

Tracing Programs by Hand

• Understanding how a program will evaluate depends on
systematically keeping track of many details.

• As your program is evaluated, there are many moving parts:
1. The current line of code, or expression within a line, it will process next

2. The trail of function call bookmarks that led to the current line

3. The values of all variables and a map of variable "names" to the location
of their values

• For humans, this is more than you can keep track of in your head!
• Good news: diagrams will help you keep track of these things... just like the

CPU

Environment Diagrams

• A program's state is made up of the values stored in memory.

• A program's environment binds names in your program to values in memory.

• Use environment diagrams to trace both state and naming environment.

• Additionally, they'll help you keep track of how function calls are processed.

• In the 2018-2019 academic year we began teaching with these diagrams
• On the final exam, students who made use of environment diagrams to trace code were

over 50% less likely to make errors than students who did not.

Environment Diagram

• There are two areas of an environment diagram:

1. Call Stack (or "The Stack")
• When a function is called, a new Frame is added
• Every frame has:

• The name of its function definition

• A list of variable names and boxes holding their
bound values

• Variable values are stored in stack frames
• A place to represent its return value (rv) when it

returns.

2. Dynamic Memory Heap (or "The Heap")
• We'll come back to this in the next unit.

• This is a rough approximation of the model of how
state in your programs is managed by the processor.

Global

The Call Stack The Heap

Example:

main

fn: lines 1-4

main

x 0

a

List[str]

0 "a"

1 "string"

2 "array"

For this unit, we'll
focus the call stack.

In the units ahead,
we'll learn about
references & the

heap.

f x 0

rv 1

ra 1
0

ra 2
0

rv Ø

Environment Diagram Example

01
02
03
04
05
06
07
08
09
10
11
12

• Let's trace the example to the left
using an environment diagram!

• In the process you will learn how to:
• Establish a frame for main

• Establish local variables (those declared
inside of a function's body) in the frame

• Call functions
• Establish a frame for the function

• Establish parameters as local variables,
assigned their argument's values

• Keep track of the value returned by a function
call

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

Environment Diagram Example

01
02
03
04
05
06
07
08
09
10
11
12

• Let's trace the example to the left
using an environment diagram!

• In the process you will learn how to:
• Establish a frame for main

• Establish local variables (those declared
inside of a function's body) in the frame

• Call functions
• Establish a frame for the function

• Establish parameters as local variables,
assigned their argument's values

• Keep track of the value returned by a function
call

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Call Stack

Globals

Module Evaluation
When Python loads a module (a file name ending in .py) the stack and heap are empty outside
of Python's built-ins, such as the print function, which are outside our diagramming concern.
A Globals frame is established and evaluation begins from the top of the file.

01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

The Call Stack

Globals

Function Definition - main
When a function is defined, its name is bound in your current stack frame. It refers to an
function object ("fn" shorthand) representing its code stored on the heap. We'll use its line #s.

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

The Call Stack

Globals

Function Definition - f
When a function is defined, its name is bound in your current stack frame. It refers to an
function object ("fn" shorthand) representing its code stored on the heap. We'll use its line #s.

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

f fn: lines 7-9

The Call Stack

Globals

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

f fn: lines 7-9

Name Resolution: What is main?
When a name is encountered in our program we must be able to resolve what it is bound to in
memory. In this case, main is bound to the function defined on lines 1 through 4. The ()'s
following the name main tell us this is a function call.

The Call Stack

Globals

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

f fn: lines 7-9

Aside: Why does the call to main occur at the end?
Remember: if you make use of a name is not yet defined, you get a NameError in Python.
Calling main at the end ensures all functions in the module are defined before main begins.

The Call Stack

Globals

Function Call Process
First, evaluate the arguments in the call's parentheses. Confirm they match the definition's parameters. Here there are none!
Second, establish frame for the call on call stack (its namesake) with its:

1) name
2) the line number the call originated on and will return back to named return address ("RA")
3) parameters bound to argument values (main defines 0-parameters, so there are no parameters to bind)

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

f fn: lines 7-9

12

main

RA

The Call Stack

Globals

Function Call Jump
Once the process establishing a frame for a function call is complete, control jumps into the
function and begins evaluating the statements in the function's body starting from the top
statement. Notice the RA in main's frame maintains the bookmark control will return to.

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

f fn: lines 7-9

12

main

RA

The Call Stack

Globals

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

f fn: lines 7-9

12

main

RA

Variable Initialization - 1) Evaluate RHS, 2) Bind Name
When a variable is initialized, first evaluate the value on the right. In this case it's the number
literal 4, no more work is needed. Then, bind its name to its initial value in the current frame.

x 4

The Call Stack

Globals

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

f fn: lines 7-9

12

main

RA

Variable Initialization - 1) Evaluate RHS

x 4

When a variable is initialized, first evaluate the expression on its right-hand side.
In this case it's a function call, so let's evaluate the function call.

The Call Stack

Globals

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

f fn: lines 7-9

12

main

RA
x 4

Name Resolution: What is f?
Look in the current frame (main) for the name. Is it bound there? No!
If the name is not in the current frame, next check the Globals frame. Is it bound there? Yes!
The name f is bound to the function defined on lines 7 through 9.

The Call Stack

Globals

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

f fn: lines 7-9

12

main

RA
x 4

Function Call - Step 1) Evaluate Arguments
Before evaluating the function call to f, we must determine the values of each argument.
What is the name x bound to in main's frame? We look in our diagram to see its value is 4.
Next, we confirm the number, types, and order of arguments match the parameters. They do.

x evaluates to 4

The Call Stack

Globals

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

f fn: lines 7-9

12

main

RA
x 4

Function Call - Step 2) Establish a Frame
1. Give the frame the function's name. 2. Write down the line the function call occurred on as
the frame's Return Address (RA). 3. Bind argument values to the function's parameters.

x evaluated to 4

3

f n 4
RA

The Call Stack

Globals

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

f fn: lines 7-9

12

main

RA
x 4

Function Call - Step 3) Jump to Function
Once the process establishing a frame for a function call is complete, control jumps into the
function and begins evaluating the statements in the function's body starting from the top
statement. Notice the RA in f's frame maintains the bookmark control will return to.

3

f n 4
RA

The Call Stack

Globals

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

f fn: lines 7-9

12

main

RA
x 4

3

f n 4
RA

Variable Initialization - 1) Evaluate RHS
When a variable is initialized, first evaluate the expression on the right-hand side.
In this case it's an arithmetic expression, so let's evaluate it first.

The Call Stack

Globals

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

f fn: lines 7-9

12

main

RA
x 4

3

f n 4
RA

Name Resolution: What is n?
Look in the current frame (f) for the name n. Is it bound there? Yes!
The name n is bound to the int value 4, so accessing n evaluates to 4.

The Call Stack

Globals

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

f fn: lines 7-9

12

main

RA
x 4

3

f n 4
RA

Expression Evaluation
Complete the evaluation of the right-hand side's expression: 4 + 1 is 5

The Call Stack

Globals

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

f fn: lines 7-9

12

main

RA
x 4

3

f n 4
RA

Variable Initialization - 2) Bind Name
After evaluating the right-hand side, bind the name x its initial value in the current frame. The
current frame is f's frame.

x 5

Notice the frame for main has its
own variable x with a value of 4.

The frame for f also has its own
variable x with a different value.

This is entirely ok and a wonderful,
powerful thing. This means when
you write functions you don't need
to concern yourself with the variable
names in other functions.

The Call Stack

Globals

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

f fn: lines 7-9

12

main

RA
x 4

3

f n 4
RA

x 5

Return Statement - Step 1) Evaluate its Expression
When a return statement is encountered, you must first evaluate expression it is returning.
Let's focus on evaluating the expression x.

The Call Stack

Globals

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

f fn: lines 7-9

12

main

RA
x 4

3

f n 4
RA

x 5

Name Resolution: What is x?
When a name is encountered in our program we look to the current frame of the stack for its
value. In this case, x's value in f's frame is bound to 5.

The Call Stack

Globals

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

f fn: lines 7-9

12

main

RA
x 4

3

f n 4
RA

x 5

Return Statement - Step 2) Record its Value
When a return statement is encountered, once you know the value its expression evaluates to,
enter the Return Value in a box named RV in the current frame.

5RV

The Call Stack

Globals

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

f fn: lines 7-9

12

main

RA
x 4

3

f n 4
RA

x 55RV

Return Statement - Step 3) Send RV back to RA
The returned value is then "returned" to the return address where the call originated. The
originating call expression evaluates to RV. Back in main, this line is evaluated as y: int = 5

The Call Stack

Globals

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

f fn: lines 7-9

12

main

RA
x 4

3

f n 4
RA

x 55RV

Variable Initialization - 2) Bind Name
Now that we've evaluated the right-hand side, we add an entry for the newly declared variable
y to the current frame main.

y 5

How can you tell what the
current frame of execution is?

The current frame is always the
lowest frame that has not
returned. So, if a frame has an RV
entry, that frame is ignored.

Behind the scenes in your
computer, once a function call
returns its frame is deleted.
When working on paper, though,
it is helpful to keep track of all
the work it took to arrive at a
given position in our program.

The Call Stack

Globals

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

f fn: lines 7-9

12

main

RA
x 4

3

f n 4
RA

x 55RV

y 5

Print Function Call
A call to print goes through the exact same steps as the other function calls.

Name resolution? It's built-in! There are rules for resolving built-in functions, too. Not your concern for now.

The Call Stack

Globals

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

f fn: lines 7-9

12

main

RA
x 4

3

f n 4
RA

x 55RV

y 5

Print Function Call - 1) Evaluate Arguments
Before evaluating the function call to print, we must determine the values of each argument.
What is the name x bound to in main's frame? We look in our diagram to see its value is 4!
Convince yourself of it. Next, we look for y and see it is bound to 5.

The Call Stack

Globals

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

f fn: lines 7-9

12

main

RA
x 4

3

f n 4
RA

x 55RV

y 5

Print Function Call - 2) Establish a Frame
For functions defined outside of the program we are tracing we will "abstract away" their
function call frames since we do not have their code to trace and we're confident in their
correctness and purpose. The function emits output, which is useful to keep track of.

Output

4 5
When you provide multiple
arguments to the print function,
separated by commas, they are
printed on the same line and
separated by a space.

The Call Stack

Globals

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

f fn: lines 7-9

12

main

RA
x 4

3

f n 4
RA

x 55RV

y 5
Output

4 5

End of main or any function that returns None
When our program reaches the end of a function that returns , notice it has no return statement.
It's Return Value is None. We use the empty set notation Ø as a convention of representing None.
The processor would jump back to the return address at line 12 and reach the end of the program.

ØRV

The Call Stack

Globals

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

f fn: lines 7-9

12

main

RA
x 4

3

f n 4
RA

x 55RV

y 5
Output

4 5ØRV

Functions that return None - Send RV back to RA
The returned value is then "returned" to the return address where the call originated. The
originating call expression evaluates to RV. In this case, line 12 evaluates to None.

The Call Stack

Globals

main
01
02
03
04
05
06
07
08
09
10
11
12

def main() -> None:
x: int = 4
y: int = f(x)
print(x, y)

def f(n: int) -> int:
x: int = n + 1
return x

main()

The Heap

fn: lines 1-4

f fn: lines 7-9

12

main

RA
x 4

3

f n 4
RA

x 55RV

y 5
Output

4 5

End of Program
Fin. The execution of this program is complete!

Note, if there were additional statements after the call to main()... they would evaluate just like anything else!

ØRV

