
Memory
Diagram 
Practice



Environment Diagrams

Function Call

1. Verify and prepare for call
i. Is function name bound in your diagram or built-in?

ii. Fully evaluate each argument's expression

iii. Do arguments match function parameters?

2. Establish new frame on call stack
i. Add name of function

ii. Add RA (Return Address line #)

iii. Copy arguments to parameters bound in frame

3. Jump to first line of function definition

Function Return Statement

1. Evaluate returned expression

• Add RV (Return Value) in current stack frame

2. Jump back to function caller

i. Line is in RA (Return Address)

ii. The function call evaluates to last frame's RV

Function Definitions: Enter name in current 
frame and draw arrow to Function object on 
heap labeled 

Current Frame: The most recently added frame 
that has not returned. (No RV!)

Name Resolution: Look for name in the current 
frame. Not there? Check Globals frame!

Variable Initialization: Enter name and space for 
variable in current frame.

Variable Assignment: Find variable's location via 
name resolution, copy assigned value to it.

Variable Access: Find variable via name 
resolution, use value currently assigned to it.

1. Add columns for Call Stack, Heap, and Output

2. Add a Globals frame to Call Stack



Diagram 0: Jump Around
• Assume the special dunder variable __name__ is 

assigned "__main__" in the evaluation of this program.

• Try drawing diagram yourself for 3 minutes, then 
discuss in breakout rooms for another 3-5 minutes

• Respond on Gradescope to the Diagram 0 questions.

3



4



Diagram 1: CPU go brr

• Assume the special dunder variable __name__ is 
assigned "__main__" in the evaluation of this program.

• Try drawing diagram yourself for 3 minutes, then 
discuss in breakout rooms for another 3-5 minutes

• Respond on Gradescope to the Diagram 1 questions.



Function Evaluation - Gradescope

What is the result of evaluating the function call expression: cute(3)



Notes on Nested Loops

• General Rule: When the closing curly brace of a loop is encountered, 
the loop jumps back to the start of its matching condition.

• An inner loop will jump back up to the inner loop's condition and 
an outer loop will jump back up to the outer loop's condition.

• Thus, an inner loop must complete all of its iterations for every 
individual iteration of an outer loop.


