for....n Loops /

'teration: Looping Toward a Goal

* [teration is the superpower of many algorithmic problems:
* Given a sequence you want to process, you work through them item-by-item

« Common pattern when iterating on a Sequence:

seq: range = range(l, 100, 2)
1: int = 0
while i < len(seq):
int = seql[il]
process item
i+=1

for...1n - lterate through a collection of items.

seq: range = range(l, 100, 2) seq: range = range(l, 100, 2)
i: int = 0 for in odds:
while i < len(seq): # process item
int = seq[i]
process item
i+=1
s

* The left pattern is so common when iterating through each in a sequence, the

for...instatement is a simpler abstraction for doing same.

* The for..instatement is often broadly called a "for each" construct and has variations
in most languages.

* This pattern works generally on any kind of sequence.
» Alsoworks for other /terablecollection types we'll explore in the days ahead

for...in - Semantics

for in [sequence]:
In the repeat block:
identifier is now a variable
assigned to the next item
1in the iteration.

Is a variable name you choose for each itemin repeat block

* The assignment of each item and progression through each item in the
sequence is handled for you as part of the construct.

* The loop completes after the repeat block evaluates for the last item.

» This works for algorithms where you want to process every item.
 This gives you /ess contro/than with a while loop.
« Many algorithms involve more clever use of indexing.

