
Object-oriented

Methods
in Python

Introducing: Methods

• A method is a special kind of
function defined in a class.
• The first parameter, idiomatically

named self, is special (coming next!)
• Everything else you know about a

function's parameters, return types,
and evaluation rules are the same with
methods.

• Once defined, you can call a method
on any object of that class using the
dot operator.
• Just like how attributes were accessed

except followed by parenthesis and any
necessary arguments excluding one for
self.

class ClassName:

... # Attributes Elided

def method_name(self, [params...]) -> retT:
<method body>

an_object: ClassName = ClassName()
an_object.method_name()

Functions vs. Methods

def say_hello() -> None:
print("Hello, world")

1. Let's define a silly function.

say_hello()

2. Once defined, we can then call it.

a_person: Person = Person()
a_person.say_hello()

4. Once defined, we can call the
method on any Person object:

class Person:

... # attributes elided

def say_hello(self) -> None:
print("Hello, world.")

3. Now, let's define that same function
as a method of the Person class.

Hands-on: Practice with the self parameter

1. Declare a name attribute of
type str

2. Initialize the name attribute of
the Person object you construct
in the main function

3. Update the say_hello method as
shown to the right. Notice the
conversion to an f-string!

4. Try constructing another
person object in main and also
calling its say_hello method.

def say_hello(self) -> None:
print(f"Hello, I'm {self.name}!")

A Method's Superpower is that it automagically gets

a reference to the object the method was called on!

• Consider the method call:

a_person.say_hello()
• The object reference is a_person
• The method being called is say_hello()

• The say_hello method's definition is:

class Person:
... # Attributes Elided
def say_hello(self) -> None:

print(f"Hello, I'm {self.name}!")

• Notice: The method has an untyped first parameter named self.
• Its type is implicitly the same as the class it is defined in.

• When a method call evaluates, the object reference is automagically its first argument.
• Thus, in the example above, selfwould refer to the same object that a_person does.

Suppose the interpreter just completed this line...

Globals
... Elided ...

The Stack The Heap

main

p0
Point

x 0.0

y 0.0

RA ...

How is this method call processed? First, a frame is
added...

Globals
... Elided ...

The Stack The Heap

main

p0
Point

x 0.0

y 0.0Point#__repr__

What's up with this pound sign? It's conventional
across many programming languages to identify a
method by ClassName#method.

RA ...

RA 17

THEN, a reference named this is established TO the object the
method was called on.... and this is all the magic of a method call.

Globals
... Elided ...

The Stack The Heap

main

p0
Point

x 0.0

y 0.0Point#__repr__

What's up with this pound sign? It's conventional
across many programming languages to identify a
method by ClassName#method.

RA ...

RA 17 self

In the method call evaluation, notice self refers to the same
object the method was called on.

Globals
... Elided ...

The Stack The Heap

main

p0
Point

x 0.0

y 0.0Point#__repr__

RA ...

RA 17 self

RV "0.0, 0.0"

Method Call Tracing Steps

When a method call is encountered on an object,

1. The processor will determine the class of the object and then confirm it:
1. Has the method being called defined in it.

2. The method call's arguments agree with the method's parameters.

2. Next it will initialize the RA, parameters, and the self parameter

• The first parameter is assigned a reference to the object the method is called on

• The first parameter of a method is idiomatically named self in Python

3. Finally, when the method completes, processor returns to the RA.

Why have both functions and methods?

• Methods allow objects to have "built-in" functionality
• You don't need to import extra functions to work with an object, they are bundled.
• As programs grow in size, methods and OOP have some additional features to help

teams of programmers avoid accidental errors.

• Different schools of thought in functional programming-style (FP) versus
object-oriented programming-style (OOP).
• Both are equally capable, but some problems are better suited for one style vs. other.

• FP tends to shine with data processing problems
• Data analysis programs like processing stats and are natural fits

• OOP is great for stateful systems like user interfaces, simulations, graphics

